Georgetown University home page Search: Full text search Site Index: Find a web site by name or keyword Site Map: Overview of main pages Directory: Find a person; contact us About this site: Copyright, disclaimer, policies, terms of use Georgetown University home page Home page for prospective students Home page for current students Home page for alumni and alumnae Home page for family and friends Home page for faculty and staff Georgetown University Search: Full text search Site Index: Find a web site by name or keyword Site Map: Overview of main pages Directory: Find a person; contact us About this site: Copyright, disclaimer, policies, terms of use
Navigation bar Navigation bar
spacer spacer spacer spacer
border
spacer spacer spacer
border
spacer spacer

FOR IMMEDIATE RELEASE: October 14, 2012


CONTACT:

Karen Mallet
(media only)
km463@georgetown.edu


What You Hear Could Depend on What Your Hands are Doing

A new finding could lead to strategies for treating speech loss after a stroke and helping children with dyslexia.


NEW ORLEANS, La. —New research links motor skills and perception, specifically as it relates to a second finding—a new understanding of what the left and right brain hemispheres “hear.” Georgetown University Medical Center researchers say these findings may eventually point to strategies to help stroke patients recover their language abilities, and to improve speech recognition in children with dyslexia.

The study, presented at Neuroscience 2012, the annual meeting of the Society for Neuroscience, is the first to match human behavior with left brain/right brain auditory processing tasks. Before this research, neuroimaging tests had hinted at differences in such processing.

“Language is processed mainly in the left hemisphere, and some have suggested that this is because the left hemisphere specializes in analyzing very rapidly changing sounds,” says the study’s senior investigator, Peter E. Turkeltaub, M.D., Ph.D., a neurologist in the Center for Brain Plasticity and Recovery. This newly created center is a joint program of Georgetown University and MedStar National Rehabilitation Network.

Turkeltaub and his team hid rapidly and slowly changing sounds in background noise and asked 24 volunteers to simply indicate whether they heard the sounds by pressing a button.

“We asked the subjects to respond to sounds hidden in background noise,” Turkeltaub explained. “Each subject was told to use his or her right hand to respond during the first 20 sounds, then the left hand for the next 20 second, then right, then left, and so on.”

He says when a subject was using their right hand, they heard the rapidly changing sounds more often than when they used their left hand, and vice versa for the slowly changing sounds.

“Since the left hemisphere controls the right hand and vice versa, these results demonstrate that the two hemispheres specialize in different kinds of sounds—the left hemisphere likes rapidly changing sounds, such as consonants, and the right hemisphere likes slowly changing sounds, such as syllables or intonation,” Turkeltaub explains.

“These results also demonstrate the interaction between motor systems and perception. It’s really pretty amazing. Imagine you’re waving an American flag while listening to one of the presidential candidates. The speech will actually sound slightly different to you depending on whether the flag is in your left hand or your right hand.”

Ultimately, Turkeltaub hopes that understanding the basic organization of auditory systems and how they interact with motor systems will help explain why language resides in the left hemisphere of the brain, and will lead to new treatments for language disorders, like aphasia (language difficulties after stroke or brain injury) or dyslexia.

“If we can understand the basic brain organization for audition, this might ultimately lead to new treatments for people who have speech recognition problems due to stroke or other brain injury. Understanding better the specific roles of the two hemispheres in auditory processing will be a big step in that direction. If we find that people with aphasia, who typically have injuries to the left hemisphere, have difficulty recognizing speech because of problems with low-level auditory perception of rapidly changing sounds, maybe training the specific auditory processing deficits will improve their ability to recognize speech,” Turkeltaub concludes.

Turkeltaub and his co-authors report having no personal financial interests related to the study.

About the Center for Brain Plasticity and Recovery
The Center for Brain Plasticity and Recovery, a Georgetown University and MedStar National Rehabilitation Network collaboration, focuses on the study of biological processes underlying the brain’s ability to learn, develop, and recover from injury. Through interdisciplinary laboratory and clinical research and patient care, the Center for Brain Plasticity and Recovery aims to find ways to restore cognitive, sensory, and motor function caused by neurological damage and disease.

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC’s mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health. In fiscal year 2010-11, GUMC accounted for 85 percent of the university’s sponsored research funding.



###




spacer spacer
Navigation bar Navigation bar