Georgetown University home page Search: Full text search Site Index: Find a web site by name or keyword Site Map: Overview of main pages Directory: Find a person; contact us About this site: Copyright, disclaimer, policies, terms of use Georgetown University home page Home page for prospective students Home page for current students Home page for alumni and alumnae Home page for family and friends Home page for faculty and staff Georgetown University Search: Full text search Site Index: Find a web site by name or keyword Site Map: Overview of main pages Directory: Find a person; contact us About this site: Copyright, disclaimer, policies, terms of use
Navigation bar Navigation bar
spacer spacer spacer spacer
border
spacer spacer spacer
border
spacer spacer

FOR IMMEDIATE RELEASE: January 26, 2006


CONTACT:

Liz McDonald
202-687-5100
eem6@georgetown.edu


BRCA1 Gene Found to Inhibit Two Sex Hormones, Not Just One


Washington, DC — It’s been known that the breast cancer susceptibility gene BRCA1 regulates use of estrogen in breast and other cells, but now researchers at Georgetown University Medical Center have discovered that it also controls activity of a second sex steroid hormone, progesterone.

The findings, conducted in cell culture and in mice and reported by the researchers in the January issue of Molecular Endocrinology, could help explain why women who have mutations in their BRCA1 gene are susceptible to a number of different “hormone-dependent” cancers, including those of the breast, endometriun and cervix.

It also has implications for ordinary cancers that arise because a normal BRCA1 gene is under-expressed, said the study’s principal investigator, Eliot Rosen, MD, PhD, professor of oncology, cell biology, and radiation medicine at the Lombardi Comprehensive Cancer Center.

For example, he says that up to 40 percent of breast tumors are deficient in BRCA1, “and it may be that some patients could benefit not only from an anti-estrogen therapy, like tamoxifen, but also from an anti-progesterone agent.

“We don’t know if that is true yet, of course, but it is certainly worth investigating, given our findings,” Rosen said.

The BRCA1 gene and a second gene, BRCA2, were discovered to be breast cancer susceptibility genes in 1994 and 1995, respectively. Women who inherit faulty copies of one of these genes have up to an 80 percent increased risk of developing breast cancer by age 70, and are also more likely to be diagnosed with ovarian cancer.

Rosen and his research team undertook the study to understand why loss of the BRCA1 gene results in cancers in tissues that are dependent on hormones. They focused on the progesterone hormone, in part, because of the observation that women who use hormone replacement therapy that includes both estrogen and progestin (a synthetic form of progesterone) are at greater risk of developing breast cancer than women who use only estrogen replacement.

The use of progesterone in the breast is tightly regulated and is primarily activated when growth in cells is needed, such as during the female menstrual cycle and to support a pregnancy. A cell’s use of progesterone and other such hormones is controlled by specific receptor proteins, located inside cells, which bind on to the hormone. This process activates the receptor, which then migrates to the cell nucleus to stimulate gene expression.

To find out what role BRCA1 played in progesterone receptor signaling, the Lombardi research team conducted a series of experiments. In one set of cell culture studies in the laboratory, they used breast cancer cells that were responsive to progesterone, and then genetically manipulated them to either over or under-express the BRCA1 gene in order to assess the gene’s effect on progesterone receptor signaling.

They also used mice in which the BRCA1 gene was partially deleted, but only in breast tissue. The animals were treated with estrogen, or progesterone, or both, and response of the mammary gland was compared with that of normal mice.

In this way, the researchers concluded that BRCA1 interacts physically with the progesterone receptor, and stops it from activating other genes. It does this even in the absence of the progesterone hormone, and, thus, acts as a strong check on errant growth.

“But in mice deficient in BRCA1, we found that estrogen plus progesterone has a particularly large effect in stimulating the growth of mammary epithelial cells ? an effect much greater than the effects of either hormone used alone,” Rosen said.

The study was funded by grants from the Susan G. Komen Breast Cancer Foundation and the National Cancer Institute. Contributing to the study were Yongxian Ma, MD; Pragati Katiyar, MS; Laudette P. Jones, PhD; Saijun Fan, MD, PhD; Yiyu Zhang, MD; and Priscilla A. Furth, MD.

About Georgetown University Medical Center
Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO.)




spacer spacer
Navigation bar Navigation bar